Search results for "Radar observations"

showing 3 items of 3 documents

Growth of Cloud Drops by Collision, Coalescence and Breakup

2010

As we have already learned from our brief historical review in Chapter 1, it has long been established that the presence of ice is not always necessary for precipitation formation in clouds. In more recent times, radar observations have confirmed this early conclusion. In such cases, the flow of water up the spectrum from small droplets to rain must occur by the process of collision and coalescence of drops. This is often referred to as the collection process, and sometimes erroneously as the ‘warm rain’ process. The latter designation is somewhat inappropriate, since collection growth also occurs in clouds colder than 0°C (Braham, 1964).

Coalescence (physics)Radar observationsMeteorologyLiquid water contentPrecipitationBreakupCollisionGeologyEarly conclusion
researchProduct

Mixed-Phase Clouds: Progress and Challenges

2017

Mixed-phase clouds represent a three-phase colloidal system consisting of water vapor, ice particles, and coexisting supercooled liquid droplets. Mixed-phase clouds are ubiquitous in the troposphere, occurring at all latitudes from the polar regions to the tropics. Because of their widespread nature, mixed-phase processes play critical roles in the life cycle of clouds, precipitation formation, cloud electrification, and the radiative energy balance on both regional and global scales. Yet, in spite of many decades of observations and theoretical studies, our knowledge and understanding of mixed-phase cloud processes remains incomplete. Mixed-phase clouds are notoriously difficult to represe…

Atmospheric Science010504 meteorology & atmospheric sciencesMeteorologybusiness.industryEarth scienceCloud physicsCloud computing010502 geochemistry & geophysicsOceanographyNumerical weather prediction01 natural sciencesTroposphere13. Climate actionInternational Satellite Cloud Climatology Projectddc:550Clouds; Aircraft observations; Lidars/Lidar observations; Microwave observations; Radars/Radar observations; Climate modelsEnvironmental scienceClimate modelPrecipitationbusinessWater vaporAstrophysics::Galaxy AstrophysicsPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciences
researchProduct

Tidal currents in the Malta - Sicily Channel from high-frequency radar observations

2015

Two years of sea surface current measurements acquired since August 2012 by High-Frequency SeaSonde radars over the relatively shallow shelf area dividing the Maltese Islands from Sicily (the Malta - Sicily Channel), are used to characterize the surface tidal currents in the region. Tidal currents are generally weak and concentrated in the semidiurnal and diurnal bands, barely exceeding 3cms-1 in the semidiurnal band (M2, S2), and below 6cms-1 in the diurnal band (K1, O1). In the middle part of the basin, the M2 currents oscillate along the main Channel axis; on the contrary the S2 oscillations are oriented along the energetic Atlantic Ionian Stream (AIS) flow. Diurnal tides have a more cir…

geographygeography.geographical_feature_categorySicily ChannelAmphidromic pointTideGeologyStructural basinAquatic ScienceOceanographyTidal currentCurrent (stream)Radar observationsOceanographyMediterranean seaAquatic scienceMediterranean SeaTidal currentGeomorphologyGeologyChannel (geography)HF coastal radar
researchProduct